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Introduction

The genus Drosophila is of great interest to biolo-
gists because of our vast knowledge of the biology
of many of its members (~1500 species; Bächli
1999-2008). Much of this knowledge stems from
the century-long study of the model organism
Drosophila melanogaster, but a large number of
other drosophilid taxa have been subjects of genet-
ic, evolutionary, and ecological research. The
interpretation of this wealth of information is
greatly aided by modern comparative methods
(see, e.g., Pitnick et al. 1999; Kopp & True 2002;
Zhang et al. 2003b; Prud’homme et al. 2006). The
quality of the conclusions that can be drawn from
comparative analyses depends on having a good
estimate of the evolutionary history of the taxa
involved. Unfortunately, even a cursory examina-
tion of the literature reveals that many aspects of
drosophilid phylogeny are controversial or poorly

studied (Ashburner et al. 2005; Markow &
O’Grady 2006).

Grimaldi’s (1990) phylogeny, based entirely on
morphological characters, is the most recent com-
prehensive family-wide treatment. An important
competing phylogenetic hypothesis is that of
Throckmorton (1975), which differs from it in
many respects. Throckmorton’s work was clearly
based on many sources of evidence (see, e.g.,
Throckmorton 1962, 1965, 1966), but he failed to
make the basis for much of his classification suffi-
ciently explicit. More recently, many fragmentary
phylogenetic hypotheses based on molecular data
have been published (see Table 1 for the most im-
portant studies). Some aspects of the phylogeny,
such as relationships within the melanogaster
species subgroup (see Coyne et al. 2004; Pollard
et al. 2006), now seem robustly supported by ana-
lysis of large molecular data sets, but comparing
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Table 2. Studies used for the supertree analysis. Semicolons separate individuals trees; multiple genes
combined in one tree are combined with +’s. Weighting factors are equivalent to the number of genes in
the tree, unless indicated between parentheses. Abbreviations as in Table 1.

Baker & DeSalle 1997 16S; ACHE; Adh; COII; COIII; hb; ND1; wg
Beverley & Wilson 1982 LHP
Bonacum 2001 (Scaptomyza) 16S + Adh + COI + COII + Gpdh
Bonacum 2001 (Hawaiian overview) 16S + Adh + COI + COII + Gpdh
Brncic et al. 1971 Chromosome
Carrasco et al. 2003 COII
Clark et al. 2007 Many (5)
Da Lage et al. 2007 Amyrel
Diniz & Sene 2004 Chromosome
Durando et al. 2000 16S; COII; Ef1α; hb; ND2
Flores et al. 2008 cac + sc; COI + COII
Gailey et al. 2000 Fru
Gao et al. 2007 ND2 + COI + COII + Cyt b + Adh + 28S
Gleason & Powell 1997 per
Gleason et al. 1997 COI + COII + cyt b + ND1 + ND5 + 16S 
Gleason et al. 1998 COI
Goto & Kimura 2001 COI; Gpdh
Haring et al. 1998 P-element + Adh
Harr et al. 2000 microsatellite
Hu & Toda 2001 Morph
Kambysellis et al. 1995 yp1
Kaneshiro et al. 1995 chromosome
Kastanis et al. 2003 ctb + tRNA-Leu + tRNA-ser + NADH + 16S
Katoh et al. 2000 Adh
Katoh et al. 2007a Adh; Gpdh
Ko et al. 2003 Adh + Adhr + Gld + ry
Kopp 2006 COII; esc; H2s; hb; ksr; Pgi; Tpi; Xdh
Kopp & True 2002 28S; Amy; COI; Gpdh; kl3; ND1
Lakovaara & Saura 1982 Gpdh
Lathe & Eickbush 1997 R2
Lee & Song 1991 morphology
Lee et al. 1990 morphology
Lewis et al. 2005 COI + COII
Manfrin et al. 2001 COI
Morán & Fontdevila 2007 COI + COII + COIII + Xdh
Narayanan 1973 chromosome
O'Grady 1999 Sod; Gpdh; 16S; 28S; Adh; COII ; cyt-b; ND1; ND5
O'Grady & Kidwell 2002 28S; Adh; COII
O'Grady & Zilversmit 2004 COII + sia + glass + l(2)not-1 + Marf + Rpt4 + ITS-1 + snf; 

morphology
Oliveira et al. 2005 Nadh2 + COI + COII + 16S/12S (1)b

Pélandakis & Solignac 1993 28S D1 + 28S D2
Perlman et al. 2003 COI/COII/COIII
Pissios & Scouras 1993 mtDNA
Prud'homme et al. 2006 Various (6)
Remsen & DeSalle 1998 COII
Remsen & DeSalle 1998 Sod
Remsen & O'Grady 2002 16S; Adh; Mor (Grimaldi reanalysed)
Robe et al. 2005 Amd; COII
Rodriguez-Trelles et al. 2000a COI; COII; COIII; Xdh
Rodriguez-Trelles et al. 2000b Xdh
Rodriguez-Trelles et al. 2000c Sod
Russo et al. 1995 Adh
Schawaroch 2002 Adh + hb + COII

Continued on next page



other results of these studies shows that they differ
in many, perhaps even most, key aspects.

The many available partial studies contain a
wealth of information on the phylogenetic history
of the genus Drosophila and related genera. Our
objective is to review primarily those studies that
have been produced since the last family-wide
phylogeny, by Grimaldi (1990), and to summarize
the relevant information. Summaries for many
groups have been provided by Markow &
O’Grady (2006), but they do not synthesize the
phylogenetic relationships at the higher levels that
will be the focus of this review. Although this is
the era of molecular studies, our review is not lim-
ited to molecular studies; cladistic studies using
morphological characteristics or chromosomal
data are often remarkably consistent with those
based on molecular data (O’Grady et al. 2001a;
Diniz & Sene 2004). Bringing together so many
studies will provide an up-to-date overview of our
knowledge on the phylogenetic history of the
genus Drosophila and related genera. We realize
that, despite the large amount of data currently
available, ours will be far from the last word on all
aspects of the phylogeny of the family Drosophil-
idae.

Here, we present an overview of the phyloge-
netic literature with an emphasis on the recent
publications. We used a formal algorithmic ap-
proach, called the supertree method, to obtain a
consensus phylogeny. In a supertree analysis, the
trees obtained from previous analyses (source

trees) are themselves analysed (see Sanderson et
al. 1998 for an introduction). The supertree
method takes the existence of a particular clade in
a published source, rather than the character states,
as the data for analysis. Our supertree analysis of
117 trees (Table 2), covering 624 species, resulted
in a well-resolved phylogenetic tree.

General problems
We note at the outset several problems with the
available literature. Virtually all workers agree that
the genus Drosophila is paraphyletic, yet most of
the taxonomic literature is focused on the species
currently included in the genus. As a result, many
potential members of the more inclusive clade that
includes Drosophila, such as Hirtodrosophila and
Zaprionus, are rarely included in phylogenetic
studies. Different studies tend to use different,
very small, and arbitrary sets of species to repre-
sent established genera, species groups, or other
taxonomic levels. Evidence suggests that several
other traditional taxa are paraphyletic or poly-
phyletic as well, including Hirtodrosophila and
Scaptodrosophila (Bächli et al. 2004).

We must also address some terminology. The
terms species group and species subgroup have no
official status among taxonomists but have had a
long tradition of use among Drosophila taxono-
mists since they were erected over 50 years ago
(Hsu 1949; see chapter 33 of Ashburner et al. 2005
for more discussion). In some cases, these group-
ings do not stand up to modern analysis, but we
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Silva & Kidwell 2000 Adh
Silva-Bernardi et al. 2006 COI
Pitnick et al. 1999 (repleta) Chromosomal data of Wassermann and sequences (28S and CO?)
Stalker 1966; Stalker 1972 Chromosomal
Tamura et al. 1996 Adh
Tarrio et al. 2000 Xdh
Tarrio et al. 2001 Adh + Ddc + Gpdh + Sod + Xdh
Tatarenkov & Ayala 2001 amd; Ddc
Tatarenkov et al. 2001 amd + Ddc + Adh + Sod
van der Linde et al. accepted (flexa) Adh + Amyrel + COI + COII + COIII + per + 16S + Ddc + Sod

+ yp1 + 28Sd1 + 28Sd2 + 28Sd8 (5)
van der Linde et al. accepted (quadrilineata) Adh + Amyrel + COI + COII + COIII + per + 16S + Ddc + Sod

+ yp1 + 28Sd1 + 28Sd2 + 28Sd8 (5)
Wang et al. 2006 Adh; ND2 + COI
Yang et al. 2004 H2A-H2B
Yotoko et al. 2003 COII
Zhang et al. 2003a Amy1; Amy3

aDr. Katoh kindly provided the trees for both genes.
bWeighted 1 because of the substantial overlap with other studies.
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will use the terms group and subgroup as a con-
venient shorthand for reference to clades. In doing
so, we do not mean to imply the acceptance of any

particular classification. Fig. 1 gives a summary of
the phylogeny implied by the current classification
(Bächli 1999-2008), but the classification in

Fig. 1. A tree of the genera, subgenera, and major species groups under consideration in the present article. The tax-
onomic organization in this figure is based on the database of Bächli (1999-2008, http://taxodros.unizh. ch), which
presents a full overview of the current taxonomic status of the family Drosophilidae. The levels represent subfami-
lies, genera, subgenera, and species groups. Subdivisions within the genera appear in parentheses; the first term indi-
cates the subgenus, the second the species group (cf. International Commission on Zoological Nomenclature 1999).



TaxoDros is conservative and has only changed
when it has stabilized (G. Bächli, pers. comm.).
Table 1 is a list of the most important articles we
have reviewed, plus a summary of the data and
methods the authors used. The number of species
we list in the text for a group is based on the on-
line database of Bächli (1999-2008) unless marked
otherwise. Taxonomic authorities are listed in
Bächli’s (1999-2008, http://taxodros.unizh.ch) up-
to-date database of the Drosophilidae of the world.

Molecular phylogenetics has been very dynam-
ic (see Swofford et al. 1996 for a detailed introduc-
tion), and methods have evolved greatly over the
last decades, partly as a result of the availability of
stronger desktop computers, which permit use of
more computational intensive methods. The earli-
er studies we review used less computer-intensive
methods based on distance or parsimony, whereas
more recent studies have tended to use maximum-
likelihood or Bayesian methods with complex
models of nucleotide substitution. Variation
between clades in the nucleotide substitution rates
can result in incorrect topologies when a single
model is assumed to be correct across the tree
(Steel et al. 1993; Lockhart et al. 1994; Galtier &
Gouy 1995; Tourasse & Li 1999). Nucleotide vari-
ation is present within at least some genes within
the family Drosophilidae (e.g., Clark et al. 2007).
When nucleotide variation is present in the data,
addressing the variation can lead to different con-
clusions about the topology (see, e.g., Moriyama
& Hartl 1993; Tarrio et al. 2001).

Supertree methods

Our goal was to construct a supertree for the genus
Drosophila and related genera. For that purpose,
we collected 117 source trees (Table 2). Several
potential pitfalls limit the use of the supertree
method (see, e.g., Gatesy et al. 2002; de Queiroz
& Gatesy 2007). Several of these are particularly
problematic for the literature on the Drosophil-
idae. First, most studies depend on reanalysis of
some of the same data as previous studies, a viola-
tion of the assumption of independence. Second,
most studies have relatively poor and haphazard
taxon sampling, so overlap (use of the same taxon)
between the species sampled in different studies is
often narrow or nonexistent, a circumstance under
which supertree (as well as supermatrix) methods
perform poorly (Bininda-Emonds & Sanderson
2001). In addition, the many choices that must be

made about inclusion/exclusion of trees and about
the relative weighting of the trees and the nodes
within them could make the exercise highly sub-
jective. The first issue related to the reuse of data
can be addressed by selective inclusion of those
trees such that the reuse of data is minimized. We
have therefore excluded some trees that added
substantially less to the taxon sampling than did
other studies. For example, we omitted several
trees in the paper by Kopp (2006), as the same
data, with a larger taxon sampling, was already
used in an earlier study (Kopp & True 2002). This
decision resulted in the exclusion of some species.
The second issue proved more serious for our
analysis. We used 117 trees (Table 2), covering
about 623 species. Of those, 185 species were only
included in a single tree, 141 in two trees, and 75
in three trees. Species included in a single tree can
be placed on any node of the supertree between the
sister taxa of the source tree (Fig. 2). Similarly, a
species included in two trees can be placed at each
node between the two source tree positions.

Trees based on units that were composed of two
of more species (e.g., Remsen & O’Grady 2002)
were excluded because they effectively represent
higher taxonomic units that cannot be matched
with a single species. All included trees were
coded using Mesquite (Maddison & Maddison
2004) with standardized species names and rele-
vant subgroup indications. Weighting factors were
assigned according to the number of genes on
which each tree was based. An exception was
made when the average number of genes per spe-
cies was considerably lower than the total number
of genes used; in that case the average number was
used. The tree based on the 12-genome analysis
(Clark et al. 2007) was based on a very large num-
ber of genes, and the weighting factor for this tree
was set to five. A higher weighting factor would
not have affected the outcome, as the 12-genome
tree was equivalent to the supertree topology.
Trees based on morphology, chromosomes, and
other nonmolecular sources were assigned a
weighting factor of one. All outgroup species not
belonging to the family Drosophilidae were
marked as ‘outgroup’, as various distant but unre-
lated species have been used in various studies.

We generated the MRP-data using Mesquite. A
nexus-file with the included trees and the data
matrix is available in the supplementary material.
The data analysis was performed with PAUP*
(Swofford 2002).We generated starting trees either
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by sequentially adding species to the tree on the
basis of closest match or by using starting tree in
which species were grouped hierarchically by tax-
onomic classification (Bächli 1999-2008). The data
were analysed with and without weighing of the
data. All analyses resulted in more than 20,000
trees.

Phylogeny

The supertree analysis of the weighted data result-
ed in a well-resolved tree. Of the 623 species, 297
that were present in at least three trees were used
for the analysis. One species, D. sternopleuralis
(histrio species group) had a disproportionate ef-
fect on the resolution within the immigrans-tri-
punctata radiation and was excluded from the
analysis. An overview of the whole strict consen-
sus tree is presented in Fig. 3. Details of the tree
are presented in Fig. 4 (subgenus Sophophora),
Fig. 5 (immigrans-tripunctata radiation, subgenus
Dorsilopha as well as Zaprionus, Liodrosophila,
and Samoaia), Fig. 6 (‘Hawaiian Drosophila’,
Scaptomyza, Hirtodrosophila, and polychaeta
group), and Fig. 7 (virilis-repleta radiation and
subgenus Siphlodora).

The discussion below works its way from the
base of the tree upward. Each section addresses
the current status of the clade and discusses the
results of the supertree analysis in that context.

Family Drosophilidae. – The division of the fami-
ly Drosophilidae (3750 species; Bächli 1999-

2008) into two subfamilies (Fig. 1), Steganinae
and Drosophilinae (Hendel 1917), has been fol-
lowed by many authors (Duda 1924; Throck-
morton 1962, 1965, 1975; Okada 1989; Grimaldi
1990; Sidorenko 2002), but no single morphologi-
cal character distinguishes the two (see Ashburner
et al. 2005 for discussion). The only molecular
study incorporating several genera of the Stegan-
inae (Remsen & O’Grady 2002) suggests, on the
basis of a sample of four genera of steganines and
18 of drosophilines, that both Steganinae and
Drosophilinae are monophyletic.

Subfamily Drosophilinae. – The last monograph
covering the whole subfamily Drosophilinae was
by Grimaldi (1990). Unfortunately, most molecu-
lar analyses include only those genera closely
related to Drosophila (all belonging to the infra-
tribe Drosophiliti), so we restrict our coverage to
these. This decision is reflected in the genera in-
cluded in the supertree analysis for which suffi-
cient material was available. The literature (dis-
cussed below under the various subgenera) sug-
gests that many genera are located within the sub-
genus Drosophila (including Hirtodrosophila,
Mycodrosophila, Zaprionus, Samoaia, Liodroso-
phila, Scaptomyza, and Dichaetophora) or within
the subgenus Sophophora (including Lordiphosa).
This suggestion was confirmed in the supertree
analysis for the included genera. We refer to the
genus Drosophila and its included genera as Dro-
sophila sensu lato.

The genera Scaptodrosophila and Chymomyza

Fig. 2. The effect of a species included in a single tree. a and b: Source trees. c: The potential locations of species H.
d: The consensus tree.



are generally placed basal to the genus Drosophila
s.l. (Okada 1963; Throckmorton 1975; Grimaldi
1990; DeSalle 1992a; Kwiatowski et al. 1994,
1997; Remsen & DeSalle 1998; Kwiatowski &
Ayala 1999; Tatarenkov et al. 1999; Hu & Toda
2001; Da Lage et al. 2007; Katoh et al. 2007), as
was reflected in the basal placement in the
supertree analysis (Fig. 4). These two genera have
an extra intron in the superoxide dismutase (Sod)
gene, just as does the species Ceratitis capitata,
which is sometimes used as an outgroup for
Drosophila. Drosophila and Zaprionus lack this
intron (Kwiatowski et al. 1994). The genus Scap-
todrosophila is characterized by three katepister-
nal setae almost equal in length and a pair of
enlarged prescutellar setae (acrostichal hairs), a
trait common to many species of the subfamily
Steganinae (see Ashburner et al. 2005).

Our results accord with those of Tarrio et al.
(2001) who suggested, on the basis of a study of
almost 5000 bp of sequence spread over five
nuclear genes, that Scaptodrosophila diverged be-
fore Chymomyza. They noted the wide variation in
nucleotide composition among the major groups

and implemented an analysis that accounted for
this variation and resulted in a well-supported
topology. This topology is also supported by other
studies using morphological (Okada 1963; Hu &
Toda 2001) and molecular data (DeSalle 1992a;
Kwiatowski et al. 1994, 1997). Many other studies
were unable to resolve this node but were not in
conflict with this topology (Throckmorton 1975;
Grimaldi 1990; Remsen & DeSalle 1998; Kwia-
towski & Ayala 1999; Tatarenkov et al. 1999; Ka-
toh et al. 2007) or did not reach a firm conclusion
in favour of either topology (Da Lage et al. 2007).
The support for an alternative topology favoured
by Remsen & O’Grady (2002) was low and likely
to be an artefact of long-branch attraction.

Genera Lordiphosa and Dichaetophora. – The
tenuicauda species group of the genus Lordiphosa
was recently revised as the genus Dichaetophora
(Hu & Toda 2002) after molecular (Katoh et al.
2000) and morphological (Hu & Toda 2001) ana-
lyses showed that Lordiphosa s.s. is closely relat-
ed to the subgenus Sophophora, whereas the
species in the tenuicauda group are more closely
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related to Hirtodrosophila. The placement of the
Dichaetophora close to Hirtodrosophila was con-
firmed in our supertree analysis (Fig. 6). Older
studies (Throckmorton 1975; Laštovka & Máca
1978; Hackman 1982; Grimaldi 1990; Pélandakis
& Solignac 1993) reached contradictory conclu-
sions because they were by chance limited to
species of one of the two genera. Lordiphosa s.s. is
the sister clade of the willistoni-saltans clade
(Katoh et al. 2000, Y. Hu & M. Toda, pers.
comm.), making the subgenus Sophophora para-
phyletic.

Genus Drosophila. – Bächli (1999-2008) currently
recognizes eight subgenera (Drosophila 721
species, Sophophora 331, Chusqueophila 1, Dor-
silopha 3, Dudaica 2, Phloridosa 8, Psilodorha 2,
and Siphlodora 2), whereas he follows Grimaldi
(1990) in placing the Hawaiian Drosophila in its
own genus (Idiomyia 380, discussed below) and
not in the subgfenus Drosophila (cf. O’Grady
2002). Four of the subgenera as well as Idiomyia
are included in our supertree analysis (Fig. 3). The
subgenus Sophophora is the first branch within the
genus Drosophila s.l., in agreement with the
results of many studies (Beverley & Wilson 1984;
DeSalle 1992b; Wojtas et al. 1992; Pélandakis &
Solignac 1993; Thomas & Hunt 1993; Kwiatowski
et al. 1994, 1997; Russo et al. 1995; Tamura et al.
1996; Remsen & DeSalle 1998; Kwiatowski &
Ayala 1999; Tatarenkov et al. 1999; Tarrio et al.
2001; Remsen & O’Grady 2002; Robe et al. 2005;
Da Lage et al. 2007; Katoh et al. 2007).

Several studies placed the willistoni-saltans
clade, in at least some of their analyses, as the first
branch next to a clade containing all other Dro-
sophila (Pélandakis & Solignac 1993; Kwiatowski
et al. 1994, 1997; Katoh et al. 2000; Tarrio et al.
2001), albeit with low statistical confidence or
with lower support than the best-supported topolo-
gies within the same study (Tarrio et al. 2001).
This placement is effectively explained by the
large difference in nucleotide composition and
codon usage in the willistoni-saltans clade
(Anderson et al. 1993; Rodriguez-Trelles et al.
1999b; Tarrio et al. 2000, 2001; Powell et al. 2003;
Tamura et al. 2004; Clark et al. 2007; Heger &
Ponting 2007), and studies effectively addressing
this issue confirm the monophyly of the subgenus
Sophophora, as did our supertree analysis.

In the supertree analysis, the subgenus Dorsil-
opha is positioned between the subgenus Sopho-

phora and the remainder of the genus Drosophila
s.l. (Fig. 4). The many studies (Pélandakis &
Solignac 1993; Kwiatowski et al. 1994, 1997;
Kwiatowski & Ayala 1999; Tatarenkov et al. 1999;
Hu & Toda 2001; Tarrio et al. 2001; Remsen &
O’Grady 2002; Perlman et al. 2003; Robe et al.
2005; Katoh et al. 2007) that included this sub-
genus placed it at various positions. The subgenus
Siphlodora is placed in the virilis-repleta clade in
the supertree analysis (cf. Remsen & O’Grady
2002; van der Linde et al. accepted).

Most authors have concluded that the genus
Drosophila is paraphyletic, whether they used
morphological (Throckmorton 1962, 1965, 1975;
Grimaldi 1990; Thomas & Hunt 1993; Hu & Toda
2001) or molecular data (Beverley & Wilson 1984;
DeSalle 1992a, b; Pélandakis & Solignac 1993;
Thomas & Hunt 1993; Kwiatowski et al. 1994,
1997; Kambysellis et al. 1995; Russo et al. 1995;
Tamura et al. 1996; Remsen & DeSalle 1998;
Tatarenkov et al. 1999; Davis et al. 2000; Gailey et
al. 2000; Katoh et al. 2000; Tarrio et al. 2001;
Tatarenkov et al. 2001; Remsen & O’Grady 2002;
Da Lage et al. 2007; Katoh et al. 2007; Magnacca
& O’Grady 2008). The placement of the genera
included in the subgenus Drosophila is discussed
in detail under that subgenus. The placement of the
genus Lordiphosa within the subgenus
Sophophora is discussed above but was not includ-
ed in our supertree analysis because all members
of the genus Lordiphosa were only represented in
one or two trees.

Subgenus Sophophora. – The subgenus Sopho-
phora is generally subdivided into an ‘Old World’
clade, containing the melanogaster (184 species)
and obscura (42) species groups, and a Neo-
tropical clade containing the willistoni (23) and
saltans (21) species groups (Pitnick et al. 1999;
Tatarenkov et al. 1999; Bächli 1999-2008;
O’Grady & Kidwell 2002; Remsen & O’Grady
2002; Da Lage et al. 2007). The supertree analysis
confirmed this basal split in the subgenus (Fig. 4).
Some species of the ‘Old World’ obscura clade
(the pseudoobscura and affinis subgroups) have
subsequently invaded the New World. Four addi-
tional species groups have been recognized
(Bächli 1999-2008; Ashburner et al. 2005): dentis-
sima (17 species, Africa), dispar (3, Australia and
New Guinea), populi (2, North America and north-
ern Europe), and fima (23, Africa, sister clade of
the ananassae species subgroup; Pélandakis &



Solignac 1993). Recently, Da Lage & coworkers
(2007) proposed to elevate the ananassae and
montium subgroups to the level of species groups.

melanogaster species group. – The melanogaster
group is subdivided into 12 species subgroups:
ananassae (24 species), montium (90), melano-
gaster (9) and the ‘oriental subgroup’ cluster,
suzukii (18), takahashii (14), ficusphila (6), ele-
gans (5), rhopaloa (5), and eugracilis (1). The
remaining three (denticulata, 4; flavohirta, 1; lon-
gissima, 2) have not been placed in a phylogenet-
ic context, although some evidence indicates that
longissima is close to the montium species sub-
group (Okada & Carson 1983a; Toda 1991),
whereas flavohirta is within the oriental subgroup
cluster (Da Lage et al. 2007). Toda (1991) gives
detailed diagnoses of most species groups except
montium, denticulata, and flavohirta. A major pro-
blem with this group is the radiation among the
oriental subgroups, so explosive that even multi-
gene studies (e.g., Kopp 2006) cannot resolve all
nodes convincingly.

Our supertree analysis (Fig. 4) resolves most
nodes, although several unresolved nodes remain,
reflecting the situation in the literature. The first
subgroup to branch off is the ananassae subgroup,
and the second is the montium subgroup (cf.
Inomata et al. 1997; Goto & Kimura 2001;
O’Grady & Kidwell 2002; Kastanis et al. 2003;
Lewis et al. 2005; Kopp 2006; Prud’homme et al.
2006; Da Lage et al. 2007). Two studies were not
in conflict with the supertree results as they
resolved the nodes as a polytomy (Clark et al.
1998; Kopp & True 2002). Several studies were in
conflict with the supertree analysis, as they either
reversed the order of the ananassae and montium
subgroups, albeit with low bootstrap support
(Yang et al. 2004), or placed them together as the
sister clade of all remaining subgroups, also with
low bootstrap support (Schawaroch 2002).

The suzukii and takahashii subgroups are sister
clades based on the supertree analysis (Fig. 4), a
result predicted by most studies (Pélandakis &
Solignac 1993; Inomata et al. 1997; Harr et al.
2000; Goto & Kimura 2001; Kopp & True 2002;
Schawaroch 2002; Kastanis et al. 2003; Ko et al.
2003; Yang et al. 2004; Lewis et al. 2005;
Prud’homme et al. 2006; Da Lage et al. 2007),
even though most studies are based on limited
taxon sampling. The suzukii subgroup is poly-
phyletic (see below), and individual species are

placed reliably at various positions in the topolo-
gy. D. lucipennis is the sister clade of the elegans
subgroup (cf. Kopp & True 2002; Schawaroch
2002; Lewis et al. 2005; Prud’homme et al. 2006;
Da Lage et al. 2007), whereas D. mimetica is with-
in the takahashii subgroup (cf. Lewis et al. 2005;
Da Lage et al. 2007). The rhopaloa subgroup is
the sister group of the elegans subgroup combined
with D. lucipennis (Kopp & True 2002; Schawa-
roch 2002; Yang et al. 2004; Kopp 2006; Prud’
homme et al. 2006). The takahashii-suzukii clade
together with the melanogaster and eugracilis sub-
groups form a single clade (cf. Pélandakis & So-
lignac 1993; Goto et al. 2000; Schawaroch 2002;
Akashi et al. 2006; Kopp 2006; Prud’ homme et al.
2006). The melanogaster-eugracilis-takahashii-
suzukii clade forms together with the elegans-
rhopaloa clade and the ficusphila subgroup a poly-
tomy in the supertree analysis, reflecting the con-
tradicting results in the various studies (Kopp &
True 2002; Schawaroch 2002; Kastanis et al. 2003;
Yang et al. 2004; Lewis et al. 2005; Kopp 2006;
Prud’homme et al. 2006; Da Lage et al. 2007).

ananassae species subgroup. – The ananassae sub-
group includes three recognized complexes:
ananassae (10 species; Bock 1971; Bock &
Wheeler 1972), bipectinata (4; Bock 1971; Bock
& Wheeler 1972; Kopp & Barmina 2005), and
ercepeae (4; Lemeunier et al. 1997); the remaining
6 species are unplaced. The ercepeae complex
together with D. varians is placed basal in our
supertree (cf. Schawaroch 2002; Prud’homme et
al. 2006; Da Lage et al. 2007), whereas the
bipectinata and ananassae complexes are sister
clades (cf. Schawaroch 2002; Yang et al. 2004;
Prud’homme et al. 2006; Da Lage et al. 2007).

montium species subgroup. – Several complexes
have been recognized traditionally, but only the
auraria (Schawaroch 2002; Zhang et al. 2003a;
Yang et al. 2004; Lewis et al. 2005; Prud’homme
et al. 2006; Da Lage et al. 2007) and kikkawai
complexes (Schawaroch 2002; Zhang et al. 2003a;
Yang et al. 2004; Prud’homme et al. 2006; Da
Lage et al. 2007) are recovered in our supertree
analysis (Fig. 4). The auraria complex is placed
basal to most other species within the subgroup
(Schawaroch 2002; Zhang et al. 2003a; Yang et al.
2004; Prud’homme et al. 2006; Da Lage et al.
2007). The remaining traditionally recognized
complexes are not recovered in our analysis or in
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most molecular studies, nor are the various studies
consistent with one another.

takahashii species subgroup. – The takahashii sub-
group is monophyletic in our supertree analysis
(Fig. 4), in agreement with the many published
studies (Nigro & Grapputo 1993; Harr et al. 2000;
Goto & Kimura 2001; Kopp & True 2002;
Schawaroch 2002; Kastanis et al. 2003; Yang et al.
2004; Prud’homme et al. 2006; Da Lage et al.
2007). An exception in the literature is the study
by Lewis et al. (2005), who suggested that the
takahashii and the suzukii subgroups are essential-
ly mixed. The topology in the supertree is well
resolved, contrary to the various studies that come
to different conclusions about the topology,
although they agree with placing D. pseudotaka-
hashii basal to all other species.

suzukii species subgroup. – The suzukii subgroup
is polyphyletic (Fig. 4); D. lucipennis is the sister
taxon of the elegans subgroup (cf. Kopp & True
2002; Schawaroch 2002; Lewis et al. 2005; Kopp
2006; Prud’homme et al. 2006; Da Lage et al.
2007), D. mimetica is within the takahashii sub-
group (cf. Lewis et al. 2005; Da Lage et al. 2007).
The heterogeneity of the subgroup has been recog-
nized previously on the basis of morphological
characteristics (Toda 1991).

melanogaster species subgroup. – The melano-
gaster species subgroup is monophyletic (Fig. 4),
in accordance with all published phylogenies
(Caccone et al. 1988; Kopp & True 2002; Schawa-
roch 2002; Ko et al. 2003; Yang et al. 2004; Lewis
et al. 2005; Prud’homme et al. 2006; Da Lage et al.
2007). Pollard et al. (2006) used data for more
than 9000 genes collected by the whole-genome
project (Clark et al. 2007) to reconstruct the phy-
logeny between D. melanogaster, D. erecta and D.
yakuba. The results show the majority of the genes
support the grouping of D. erecta and D. yakuba as
sister species, as does our supertree analysis (Kopp
& True 2002; Ko et al. 2003; Parsch 2003; Lewis
et al. 2005; Prud’homme et al. 2006), but also con-
siderable incongruence in nucleotide and amino
acid substitutions, insertions and deletions, and
gene trees. This result explains the contradicting
results obtained in other studies (see Pollard et al.
2006 for details). See also Ashburner et al. (2005:
chapter 33) for an extensive discussion of this sub-
group.

obscura species group. – The obscura species
group is split into six different subgroups: affinis
(10 species), microlabis (4), obscura (12), pseudo-
obscura (8), subobscura (3), and sinobscura (3)
(Barrio et al. 1994; Gao et al. 2003). Traditionally,
the subgroups are clustered according to their Old
World (microlabis, obscura, subobscura, sinob-
scura) and New World (affinis and pseudoobscu-
ra) distributions (Lakovaara & Saura 1982; Barrio
& Ayala 1997; Haring et al. 1998; see O’Grady
1999, for a summary), and this arrangement has
been confirmed in our supertree analysis (Fig. 4).
The affinis, pseudoobscura, and subobscura sub-
groups were monophyletic and well resolved, but
the microlabis subgroup was positioned within the
obscura subgroup in an unresolved polytomy.

willistoni species group. – The willistoni species
group is split into three species subgroups: alagi-
tans (5 species), bocainensis (12), and willistoni
(6) (Gleason & Powell 1997; Gleason et al. 1998;
Tarrio et al. 2000; O’Grady & Kidwell 2002). The
monophyletic status of this group is still under dis-
cussion (Pélandakis et al. 1991; Pélandakis &
Solignac 1993; Silva & Kidwell 2000; O’Grady &
Kidwell 2002; Da Lage et al. 2007), but the willis-
toni and saltans species groups are readily distin-
guishable on the basis of morphological character-
istics (Throckmorton 1975) as well as the deletion
of an intron of the Adh gene specific to the willis-
toni group (Anderson et al. 1993; Tarrio et al.
2000). The group was monophyletic in the super-
tree analysis (Fig. 4). The bocainensis subgroup
was paraphyletic with D. nebulosa placed basal to
the willistoni subgroup.

saltans species group. – Recent studies of the
saltans species group (O’Grady et al. 1998; Silva
& Kidwell 2000) have confirmed its traditional
division into five subgroups: cordata (2 species),
elliptica (4), parasaltans (2), saltans (7), and
sturtevanti (6) (de Magalhães & Bjornberg 1957;
de Magalhães 1962; Throckmorton & de Magal-
hães 1962). Otherwise, no consensus exists on
the phylogenetic relationship of the subgroups
(O’Grady et al. 1998; Rodriguez-Trelles et al.
1999a, b; Silva & Kidwell 2000) or the saltans
subgroup itself (de Campos Bicudo 1973a, b;
O’Grady et al. 1998; Nascimento & de Campos
Bicudo 2002). The group was monophyletic in the
supertree analysis (Fig. 5), although most sub-
groups were only represented by a single species.



Subgenus Drosophila. – Our supertree analysis
confirmed the general picture from the literature
that the traditional subgenus Drosophila is para-
phyletic (overview: Fig. 3; details: Figs 5–7). The
genera Hirtodrosophila, Zaprionus, Samoaia,
Liodrosophila, Dichaetophora, and Scaptomyza,
as well as the ‘Hawaiian Drosophila’ or Idiomyia
and the subgenus Siphlodora, are positioned with-
in the subgenus Drosophila in the supertree analy-
sis. The paraphyletic nature of the subgenus was
first suggested by Throckmorton (1975), who
included 15 genera and at least two subgenera in
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Fig. 5. Supertree phylogeny: immigrans-tripunctata ra-
diation; subgenus Dorsilopha; genera Zaprionus,
Samoaia, and Liodrosophila.

Fig. 4. Supertree phylogeny: basal genera Chymomyza
and Scaptodrosophila and subgenus Sophophora. Sgr =
species subgroup; all subgroups belong to the melano-
gaster species group.
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this subgenus. Molecular research confirms that
Hirtodrosophila (Beverley & Wilson 1984;
Kwiatowski et al. 1994, 1997; Tamura et al. 1996;
Remsen & DeSalle 1998; Kwiatowski & Ayala
1999; Tatarenkov et al. 1999; Katoh et al. 2000;
Perlman et al. 2003; Robe et al. 2005; Da Lage et
al. 2007; Katoh et al. 2007), Mycodrosophila
(Katoh et al. 2000; Da Lage et al. 2007), Za-
prionus (Pélandakis & Solignac 1993; Thomas &
Hunt 1993; Kwiatowski et al. 1994, 1997; Russo
et al. 1995; Tamura et al. 1996; Remsen & DeSalle
1998; Kwiatowski & Ayala 1999; Tatarenkov et al.
1999; Davis et al. 2000; Katoh et al. 2000; Rem-
sen & O’Grady 2002; Robe et al. 2005; Da Lage
et al. 2007; Katoh et al. 2007), Samoaia
(Pélandakis & Solignac 1993; Tatarenkov et al.
1999; Davis et al. 2000; Robe et al. 2005),

Liodrosophila (DeSalle 1992b; Tamura et al.
1996; Tatarenkov et al. 1999; Davis et al. 2000;
Tatarenkov et al. 2001; Robe et al. 2005; Da Lage
et al. 2007), Dichaetophora (Katoh et al. 2000; Hu

Fig. 6. Supertree phylogeny: Hawaiian Drosophila clade
or Idiomyia, polychaeta species group, genera
Hirtodrosophila and Scaptomyza.

Fig. 7. Supertree phylogeny: virilis-repleta radiation and
subgenus Siphlodora. Sgr = species subgroup; all sub-
groups belong to the repleta species group.



& Toda 2001), Scaptomyza (DeSalle 1992b;
Pélandakis & Solignac 1993; Thomas & Hunt
1993; Kambysellis et al. 1995; Russo et al. 1995;
Tamura et al. 1996; Remsen & DeSalle 1998;
Kwiatowski & Ayala 1999; Tatarenkov et al. 1999;
Davis et al. 2000; Gailey et al. 2000; Katoh et al.
2000; Remsen & O’Grady 2002; Da Lage et al.
2007; Katoh et al. 2007), the ‘Hawaiian Droso-
phila’ or Idiomyia (Beverley & Wilson 1984;
DeSalle 1992a; Thomas & Hunt 1993; Kamby-
sellis et al. 1995; Russo et al. 1995; Tamura et al.
1996; Remsen & DeSalle 1998; Tatarenkov et al.
1999; Davis et al. 2000; Gailey et al. 2000; Katoh
et al. 2000; Tatarenkov et al. 2001; Remsen &
O’Grady 2002; Da Lage et al. 2007; Katoh et al.
2007), and the subgenera Siphlodora (Remsen &
O’Grady 2002) are included in the same clade.
This list is probably not complete, because other
closely related genera, such as Zygothrica,
Phorticella, and Paramycodrosophila (Grimaldi
1990; Remsen & O’Grady 2002), have not yet or
rarely been included in molecular analyses.

Malogolowkin (1953) and later Throckmorton
(1975) recognized two main clades within the sub-
genus Drosophila, the virilis-repleta radiation and
the immigrans-tripunctata radiation. The defini-
tions of these radiations have changed, and nowa-
days only species groups of the genus Drosophila
are included; genera such as Dettopsomyia and
Hirtodrosophila are no longer included (Yotoko et
al. 2003; Robe et al. 2005; Markow & O’Grady
2006; Da Lage et al. 2007). This basic split has
been confirmed in our supertree analysis (Fig. 3),
in agreement with many studies (Grimaldi 1990;
Pélandakis & Solignac 1993; Tamura et al. 1996;
Remsen & DeSalle 1998; Kwiatowski & Ayala
1999; Pitnick et al. 1999; Tatarenkov et al. 1999,
2001; Davis et al. 2000; Gailey et al. 2000; Katoh
et al. 2000, 2007; Remsen & O’Grady 2002;
Carrasco et al. 2003; Yotoko et al. 2003; Robe et
al. 2005). The Amyrel study of Da Lage et al.
(2007) is an exception, as they place the virilis-
repleta radiation within the immigrans-tripunctata
radiation. The genera Hirtodrosophila, Mycodro-
sophila, and Paramycodrosphila are closely relat-
ed (Grimaldi 1990; Katoh et al. 2000; Remsen &
O’Grady 2002; Da Lage et al. 2007).

An overview of the relationships within the sub-
genus Drosophila based on the supertree analysis
is presented in Fig. 3. Two major clades can be
recognized in the subgenus Drosophila. The first
clade consists of the virilis-repleta radiation, the

‘Hawaiian Drosophila’ or Idiomyia, and the sub-
genus Siphlodora, as well as the genera Hirtodro-
sophila, Scaptomyza, and Dichaetophora. The sec-
ond clade consists of the immigrans-tripunctata
radiation as well as the genera Zaprionus, Liodro-
sophila, and Samoaia.

The Hawaiian drosophilids consist of the genus
Scaptomyza and the ‘Hawaiian Drosophila’ or
Idiomyia (cf. Throckmorton 1966, 1975; DeSalle
1992a; Thomas & Hunt 1993; Kambysellis et al.
1995; Russo et al. 1995; Tamura et al. 1996;
Remsen & DeSalle 1998; Kwiatowski & Ayala
1999; Tatarenkov et al. 1999, 2001; Davis 2000;
Davis et al. 2000; Remsen & O’Grady 2002; Da
Lage et al. 2007; Katoh et al. 2007). Grimaldi
(1990) placed them in different clades, but a more
exhaustive reanalysis of his data did not support
that conclusion (Remsen & O’Grady 2002). In
turn, the Hawaiian drosophilids are the sister clade
of the virilis-repleta radiation (cf. Kambysellis et
al. 1995; Russo et al. 1995; Tamura et al. 1996;
Remsen & DeSalle 1998; Kwiatowski & Ayala
1999; Tatarenkov et al. 1999, 2001; Gailey et al.
2000; Tarrio et al. 2001; Tatarenkov & Ayala 2001;
Remsen & O’Grady 2002; Da Lage et al. 2007;
Katoh et al. 2007). The supertree analysis places
the polychaeta species group outside the virilis-
repleta radiation basal to the combined clade of
the Hawaiian drosophilids and the virilis-repleta
radiation (Fig. 3 and Fig. 6). In the literature, stud-
ies differ in the placement of the polychaeta group,
placing it variously basal to either the genus
Drosophila, subgenus Drosophila, the Hawaiian
drosophilids combined with the virilis-repleta
radiation, the virilis-repleta radiation, or the reple-
ta clade or within the immigrans-tripunctata radi-
ation (Throckmorton 1975; Pélandakis & Solignac
1993; Tamura et al. 1996; Katoh et al. 2000;
Tatarenkov & Ayala 2001; Remsen & O’Grady
2002; Carrasco et al. 2003; Wang et al. 2006; Da
Lage et al. 2007), although it is generally consid-
ered to be part of the virilis-repleta radiation. The
genera Hirtodrosophila and Dichaetophora form a
single clade in the supertree analysis (cf. Katoh et
al. 2007; van der Linde et al. accepted, but contra
Hu & Toda 2001), whereas the results suggest that
the genus Hirtodrosophila is paraphyletic. These
results could very well reflect the limited knowl-
edge of this genus, as it is often represented as a
single species in an analysis. The Hirtodrosophila-
Dichaetophora clade is placed basal to the poly-
chaeta species group in the supertree analysis.
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The second clade consists of two subclades. The
first contains the immigrans-tripunctata radiation
together with the genus Samoaia (Pélandakis &
Solignac 1993; Gailey et al. 2000; Tatarenkov et
al. 2001). The second consists of the genera Zapri-
onus (Pélandakis & Solignac 1993; Gailey et al.
2000; Tatarenkov et al. 2001; Robe et al. 2005)
and Liodrosophila (Gailey et al. 2000; Tatarenkov
et al. 2001; Robe et al. 2005).

Studies differ considerably in their placements
of genera and subgenera within the subgenus Dro-
sophila, and several conflicting trees have been
published. A major problem is the large variation
in nucleotide content, especially at the third codon
position (Moriyama & Hartl 1993; Tarrio et al.
2001). The immigrans-tripunctata and virilis-
repleta radiations, as well as the Hawaiian Dro-
sophila, form generally well-defined monophylet-
ic clades. Two species groups – polychaeta and
tumiditarsus – are generally included in the virilis-
repleta radiation, but several studies cast doubt on
that assignment (polychaeta: see above; tumiditar-
sus: Tan et al. 1949; Throckmorton 1962, 1982;
Tatarenkov & Ayala 2001; Da Lage et al. 2007;
Yassin 2007). Furthermore, several small groups
within the subgenus Drosophila (Bächli 1999-
2008) have not been assigned to either of the two
main lineages of the subgenus because of the lack
of molecular data (antioquia, 3 species; aureata, 1;
nigrosparsa, 4; onychophora, 16; picta, 1;
simulivora, 6; and xanthopallescens, 4).

The immigrans-tripunctata clade. – The immi-
grans-tripunctata clade encompasses 15 species
groups: bizonata (7 species), calloptera (8), cardi-
ni (15), funebris (7), guarani (17), histrio (16),
immigrans (101), macroptera (5), pallidipennis
(1), pinicola (3), quinaria (34, including D. gut-
tifera), rubrifrons (9), sticta (1), testacea (4), and
tripunctata (79) (Bächli 1999-2008). The immi-
grans group itself is subdivided into five groups:
curviceps (10 species), hypocausta (9), immigrans
(34), nasuta (12), and quadrilineata (22). The
guarani group (King 1947) consists of two species
subgroups, guarani and guaramunu (Bächli 1999-
2008; Remsen & O’Grady 2002) that are more
often treated as separate species groups (Kastritsis
1969; Clayton & Wheeler 1975; Throckmorton
1975; Yotoko et al. 2003; Robe et al. 2005). Note
that D. guarani and D. guaramunu have been syn-
onymized with D. ornatifrons and D. maculifrons,
respectively (Vilela & Bächli 1990).

Twelve species groups are represented in the
supertree analysis (Fig. 5). The immigrans species
group is basal to all other groups in our analysis
(cf. Pélandakis & Solignac 1993; Remsen &
O’Grady 2002; Carrasco et al. 2003; Perlman et al.
2003; Yotoko et al. 2003; Robe et al. 2005; Da
Lage et al. 2007). The next clade consists of three
small clades, the histrio, macroptera, and pal-
lidipennis species groups. The third clade is the
quinaria species group; the remaining species
groups are clustered in a large polytomy. This radi-
ation is the least resolved of all clades in the
supertree analysis, a reflection of the limited num-
ber of studies covering a substantial part of this
clade as well as the large variety of topologies
found in various studies (Pélandakis & Solignac
1993; Remsen & O’Grady 2002; Carrasco et al.
2003; Yotoko et al. 2003; Robe et al. 2005; Da
Lage et al. 2007). Furthermore, the species-group
delineations do not necessarily provide an ade-
quate basis for further analyses of this radiation,
especially because the tripunctata group as cur-
rently defined is polyphyletic (Frota-Pessoa 1954;
Throckmorton 1975; Carrasco et al. 2003; Yotoko
et al. 2003; Robe et al. 2005; Da Lage et al. 2007).

All but two studies (Da Lage et al. 2007; Katoh
et al. 2007) concluded that the immigrans-tripunc-
tata radiation is monophyletic. The study by Da
Lage et al. (2007) positioned the virilis-repleta ra-
diation between the immigrans species group and
the remainder of the radiation, whereas that by
Katoh et al. (2007) casts doubt on the placement of
quadrilineata species subgroup within the immi-
grans species group or even the immigrans-
tripunctata clade, although older studies suggest
that placement (Wakahama et al. 1983; Kumar &
Gupta 1987).

cardini species group. – The cardini group is split
into two subgroups: cardini and dunni (Heed
1962). Hollocher (1996) investigated the phyloge-
netic relations within this group on the basis of
morphological characteristics (male genitalia,
Heed 1962; cytology, Heed & Krishnamurthy
1959; Heed & Russell 1971), biogeographical
data, and mitochondrial DNA sequences. See
Wilder & Hollocher (2003) for a more detailed
study of the dunni subgroup. The dunni subgroup
was not included in the supertree analysis, but the
cardini subgroup was monophyletic (Fig. 5).

quinaria species group including D. guttifera. –
Eggs of the quinaria and guttifera species groups



differ from those of other subgenus Drosophila
species in having three rather than four egg fila-
ments. This group is monophyletic in the supertree
analysis (Fig. 5), and D. guttifera is positioned
firmly within this species group. The most exten-
sive phylogeny of the quinaria species group was
published by Perlman et al. (2003), and most other
studies agree with it either fully (Spicer & Jaenike
1996; Yotoko et al. 2003) or to a large degree
(Carrasco et al. 2003; Da Lage et al. 2007). All
studies that include D. guttifera place it within the
quinaria group, contrary to its assignment to its
own species group by Sturtevant (1942).

tripunctata species group. – Frota-Pessoa (1954)
subdivided the tripunctata group into four clusters
(numbered I through IV). Much work remains to
be done in this group as Yotoko et al. (2003),
Carrasco et al. (2003), and Robe et al. (2005)
found little support for these groups, but found
ample evidence for the paraphyletic nature of this
group (Frota-Pessoa 1954; Throckmorton 1975;
Carrasco et al. 2003; Yotoko et al. 2003; Robe et
al. 2005; Da Lage et al. 2007). 

The virilis-repleta clade. – Most authors (Tamura
et al. 1996; Pitnick et al. 1999; Katoh et al. 2000;
Carrasco et al. 2003; Robe et al. 2005; Wang et al.
2006) agree that the virilis-repleta clade consists
of two main lineages, but Da Lage et al. (2007)
place the melanica and bromeliae clades at differ-
ent places in the topology. Some studies report
minor deviation from this basal split, generally
with poor bootstrap support (Pélandakis & Solig-
nac 1993; Tatarenkov & Ayala 2001). The virilis
lineage consists of the virilis (12 species), robusta
(16), melanica (13), angor (5), and quadrisetata
(12) species groups (Watabe & Peng 1991; Wang
et al. 2006). The robusta group is polyphyletic, but
the three subgroups – lacertosa (7), okadai (3),
robusta (4) – form well-defined monophyletic
clusters (Wang et al. 2006). The repleta clade in-
cludes the repleta (100 species), mesophragmatica
(13), bromeliae (5), dreyfusi (9), annulimana (16),
flavopilosa (17), and canalinea (11) species
groups (Pitnick et al. 1999; Tatarenkov & Ayala
2001; Carrasco et al. 2003; Robe et al. 2005; Wang
et al. 2006; Da Lage et al. 2007). Remsen &
O’Grady (2002) placed the subgenus Siphlodora
in this clade, a position confirmed by van der
Linde et al. (accepted). The repleta, mesophrag-
matica, dreyfusi, and canalinea groups form a

well-supported clade (Throckmorton 1975; Pélan-
dakis & Solignac 1993; Durando et al. 2000; Tata-
renkov & Ayala 2001; Remsen & O’Grady 2002;
Robe et al. 2005; Da Lage et al. 2007). The nan-
noptera (4) species group is generally placed with-
in the repleta lineage (Pitnick et al. 1999; Tata-
renkov & Ayala 2001; Carrasco et al. 2003; Wang
et al. 2006), although Robe et al. (2005) place it
basal to the whole clade. The bromeliae group is
placed basal to the repleta s.l. clade (Pélandakis &
Solignac 1993; Tatarenkov & Ayala 2001), where-
as Da Lage et al. (2007) placed it with the poly-
chaeta group. The placement of the annulimana
group differs in different studies, but its placement
basal to the previous groups is well supported
(Tatarenkov & Ayala 2001; Robe et al. 2005; Da
Lage et al. 2007). The annulimana and flavopilosa
groups are sister clades according to Robe et al.
(2005). The position of the remaining groups –
carbonaria (1), carsoni (1), coffeata (4), peruvi-
ana (1) – is unclear as they have not been includ-
ed in any molecular study. The inclusion of the
tumiditarsus group (1) in the clade is doubtful
(Tan et al. 1949; Throckmorton 1962, 1982; Tata-
renkov & Ayala 2001; Da Lage et al. 2007; Yassin
2007).

The supertree analysis reflects the above-
described topology (Fig. 7). In the virilis lineage,
the melanica and robusta species groups formed a
single clade, but neither group was monophyletic.
The virilis group was the sister clade of the robus-
ta-melanica clade. The repleta group was mono-
phyletic except for D. fulvimacula, which was
placed in the mesophragmatica species group. The
repleta, mesophragmatica, dreyfusi, and canalinea
groups formed a single clade. The bromeliae and
nannoptera species groups were sister clades and
placed basal to the subgenus Siphlodora. The an-
nulimana group was placed between the subgenus
Siphlodora and the repleta-mesophragmatica-
dreyfusi-canalinea clade.

mesophragmatica species group. – In the supertree
analysis, the mesophragmatica species group was
resolved as a polytomy, including D. fulvimacula
of the repleta subgroup (Fig. 7), contrary to the lit-
erature that resolves it as a monophyletic group
(Carrasco et al. 2003; Robe et al. 2005). The place-
ment of repleta subgroup’s species is the average
position of five trees, but only one places the
species basal to the mesophragmatica group
(Durando et al. 2000: ND2). The branching with-
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in the group differs slightly in different studies and
according to the genes used and also differs slight-
ly from that in an earlier study using hybridization,
genetic, and morphological characteristics (Brncic
& Santibanez 1957).

melanica species group. – Eggs of several melani-
ca-group species have two filaments rather than
the usual four of the subgenus Drosophila (Stalker
1964). D. moriwakii and D. colorata are placed
basally (Narayanan 1973; Flores et al. 2008),
although Wang et al. (2006) suggested that D.
moriwakii might be placed basal to the robusta
species subgroup. Wang et al. (2006) recognized
an Old World and a New World clade, and the rela-
tionships within the New World clade have been
studied previously in detail by Stalker (1966,
1972), who used a wide range of morphological
and physiological characteristics, as well as band-
ing patterns of salivary gland chromosomes; by
Levitan (1982), who used chromosomal, especial-
ly karyotype, information; and by Pitnick et al.
(1999), who used sequences of cytochrome oxi-
dase II. In the supertree analysis, D. moriwakii and
D. colorata formed a separate clade basal to the
robusta species subgroup, making both species
groups non-monophyletic (Fig. 7). This result sug-
gests that additional studies are needed to resolve
the relationships between the various subclades.

repleta species group. – Six subgroups have been
recognized within the repleta species group: inca
(3 species), mulleri (50), hydei (7), mercatorum
(4), repleta (9), and fasciola (21) (Bächli 1999-
2008). Molecular evidence suggests that the mul-
leri clade is paraphyletic or polyphyletic (Durando
et al. 2000; Katoh et al. 2000) and includes the
repleta and mercatorum subgroups (Durando et al.
2000). Durando et al. (2000) suggested that
Wasserman originally defined the mulleri sub-
group as a ‘waste paper basket’ to include several
complexes and clusters that he could not place
elsewhere. Durando et al. (2000) and Katoh et al.
(2000) used different genes for their analyses but
produced identical trees for the repleta clade. The
supertree analysis confirms the paraphyly of the
mulleri subgroup, but contrary to Durando et al.
(2000), it includes the hydei subgroup as the sister
clade of the eremophila complex (Fig. 7). The fas-
ciola subgroup is placed basal to the remaining
subgroups, and the repleta and mercatorum sub-
groups are sister clades.

hydei species subgroup. – The hydei subgroup is
defined by the extensive coiling in both the testes
and the ventral receptacles (Wharton 1944;
Wasserman 1982). Most molecular studies support
monophyly of the subgroup (Durando et al. 2000;
Carrasco et al. 2003; Yotoko et al. 2003; Morán &
Fontdevila 2005), but that of Robe et al. (2005,
including three species) does not. The subgroup is
traditionally split into the hydei (3 species) and
bifurca (4) complexes; the first differs from the
second in having specialized spermathecae and a
chromosomal inversion (Wasserman 1962, 1982,
1992). This split is consistent with the mitochon-
drial DNA studies (Spicer & Pitnick 1996; Car-
rasco et al. 2003; Yotoko et al. 2003), although all
of these included few species. The study by Moran
and Fontdevila (2005), using nuclear DNA (Xdh),
indicated that both complexes are paraphyletic and
provided a more detailed discussion.

mulleri species subgroup. – The mulleri subgroup
is subdivided into several complexes, mulleri, buz-
zatii, eremophila, anceps, and meridiana (Du-
rando et al. 2000), but sources differ in the assign-
ment of species (Bächli 1999-2008). As discussed
under the virilis-repleta radiation, this subgroup is
not monophyletic (Durando et al. 2000; O’Grady
et al. 2001a). The phylogeny of the largest recog-
nized cluster in the buzzatii complex, the buzzatii
cluster (7 species), has been investigated in detail
separately (Xdh: Rodriguez-Trelles et al. 2000a;
COI mtDNA: Manfrin et al. 2001; wing morphol-
ogy: Morães et al. 2004). The various complexes
are recovered in the supertree analysis (Fig. 7).
The mulleri and buzzatii complexes are sister
clades, whereas the eremophila complex is placed
basal in the subgroup, as the sister clade of the
hydei subgroup.

Zaprionus genus group. – The sister genera
Phorticella (11 species) and Zaprionus (56) are
easily recognized by the white striping on the head
and mesonotum (Chassagnard 1988). The genus
Zaprionus has two subgenera, Zaprionus (44
species; even number of stripes) and Anaprionus
(12 species; odd number of stripes) (Chassagnard
1988; Pélandakis & Solignac 1993). The subgenus
Zaprionus is divided in two species groups, iner-
mis (14 species) and armatus (30); the latter is
subdivided into three species subgroups (armatus,
14 species; tuberculatus, 3; and vittiger, 13)
(Chassagnard 1988; Chassagnard & Tsacas 1993;



Da Lage et al. 2007). The genus Phorticella has
two subgenera, Phorticella (7 species) and Xeno-
phorticella (4) (Okada & Carson 1983b). The
genus Zaprionus and its two subgenera are mono-
phyletic in the supertree analysis, but the species
groups were not (Fig. 5).

Genus Scaptomyza. – O’Grady et al. (2003a) pro-
vide a tree of the subgenera based on both molec-
ular (Bonacum 2001) and morphological data and
include the subgenus Engiscaptomyza, which was
originally included as a separate subgenus in
Drosophila before Grimaldi (1990) proposed
removing it from Drosophila (p. 120). He placed
the subgenus implicitly in Scaptomyza because it
was closely related to Scaptomyza for the time
being as he argued that it ‘should eventually be
elevated to generic status’ (p.123). Many studies
have confirmed the proximity of Engiscaptomyza
to Scaptomyza (Throckmorton 1966; DeSalle &
Grimaldi 1991; Thomas & Hunt 1991, 1993;
DeSalle 1992a; Russo et al. 1995; Kambysellis &
Craddock 1997; Remsen & DeSalle 1998;
Kwiatowski & Ayala 1999; Katoh et al. 2000;
Bonacum 2001; Remsen & O’Grady 2002). The
monophyly of the genus and the inclusion of
Engiscaptomyza were confirmed in the supertree
analysis (Fig. 6).

‘Hawaiian Drosophila’. – Authors differ in the
taxonomic status of the ‘Hawaiian Drosophila’; a
minority (e.g., Powell & DeSalle 1995; Powell
1997; Bächli 1999-2008; Starmer et al. 2003;
Ashburner et al. 2005) follow Grimaldi (1990) and
place them in either the genus Idiomyia or as the
subgenus Idiomyia within Drosophila. O’Grady
(2002) has proposed that Idiomyia be syn-
onymized with the subgenus Drosophila, as it is
placed within the subgenus Drosophila, but does
not apply the same reasoning for the genus
Scaptomyza, the sister clade of the ‘Hawaiian
Drosophila’ (O’Grady et al. 2003a). Molecular
studies show that this group is monophyletic and
firmly placed within the subgenus Drosophila
(Throckmorton 1966; Beverley & Wilson 1984;
DeSalle 1992a; Thomas & Hunt 1993; Kam-
bysellis et al. 1995; Russo et al. 1995; Remsen &
DeSalle 1998; Tatarenkov et al. 1999, 2001; Davis
2000; Davis et al. 2000; Gailey et al. 2000;
Remsen & O’Grady 2002; Da Lage et al. 2007;
Katoh et al. 2007). The group includes 7 species
groups: antopocerus (15 species), haleakalae (54),

‘modified mouthparts’ (47), ‘modified tarsus’ (48),
‘picture wing’ (143), rustica (3), nudidrosophila
(28), and ateledrosophila (3) (species counts for
the last two: Magnacca & O’Grady 2008). The
planitibia subgroup is sometimes considered a
species group (Bonacum et al. 2005; Markow &
O’Grady 2006). All studies place the haleakalae
group basal to all other groups (Kambysellis et al.
1995; Baker & DeSalle 1997; Bonacum 2001).
The ‘modified mouthparts’ and ‘picture wing’
groups are sister clades according to most authors
(Thomas & Hunt 1991, 1993; Baker & DeSalle
1997; Bonacum 2001), whereas Bonacum (2001)
places the nudidrosophila within the ‘picture
wing’ clade. The antopocerus group is the sister
clade of the ‘modified mouthparts’–’picture wing’
clade (Baker & DeSalle 1997). The ‘modified tar-
sus’ group is the sister group of the antopocerus
group (Baker & DeSalle 1997; Bonacum 2001).
The single study in disagreement obtained weak
bootstrap support for the alternative (DeSalle
1992a). The supertree analysis confirms the gener-
al pattern as described (Fig. 6).

Several studies detailing specific groups within
the ‘Hawaiian Drosophila’ have been published
for the ‘picture wing’ species group (Kambysellis
et al. 1995; Kaneshiro et al. 1995), planitibia sub-
group (Bonacum et al. 2005), rustica group
(O’Grady et al. 2001b), mimica subgroup
(O’Grady et al. 2003b), and haleakalae group
(Hardy et al. 2001; O’Grady & Zilversmit 2004).

Discussion

Here, we present the results of our examination of
the current phylogenetic status of the genus
Drosophila and the related genera. The resulting
phylogenetic tree is the first detailed summary of
the relevant phylogenetic studies since the last
family-wide cladistic analysis by Grimaldi (1990),
which was based on morphological data. Most
studies we review analysed DNA sequences (Table
1), although a few studies still employed more tra-
ditional morphology-based cladistic (Hu & Toda
2001; Sidorenko 2002) or chromosome-inversion
analyses (Durando et al. 2000; O’Grady et al.
2001a; Diniz & Sene 2004).

Our review and construction of a supertree from
the large volume of work covering the genus
Drosophila and related genera shows that our
insight into the phylogenetic history of this group
has greatly improved over the last 17 years. Later
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work has sometimes confirmed the phylogeny pro-
posed by earlier researchers (e.g., Throckmorton
1975; Grimaldi 1990) and sometimes resulted in
new insights. This improved understanding of the
phylogenetic history will facilitate comparative
studies covering a wide range of species but might
also direct researchers toward studying clades for
which molecular studies are lacking or poorly exe-
cuted, such as the genera Zaprionus, Hirtodro-
sophila, and Scaptodrosophila. Furthermore, vari-
ous groups have been identified as polyphyletic or
paraphyletic by molecular studies, most notably
the genus Drosophila itself (see below).

In some cases, we were unable to find evidence
that supported one topology over others. We treat
those as polytomies in our trees. Some of these
polytomies probably reflect rapid branching, such
as the D. simulans, D. mauritiana, and D. sechel-
lia complex, which probably reflects nearly simul-
taneous speciation (Kliman et al. 2000). Such
polytomies may never be resolved. For many
others, suitable data are simply lacking. The most
noteworthy polytomies are the placement of the
melanogaster species subgroup and the various
oriental species subgroups and the various poly-
tomies within the immigrans-tripunctata radia-
tion.

Supertrees. – Supertrees can be used to build a
phylogenetic hypothesis based on averaging of the
phylogenetic signal present in published phyloge-
nies, the source trees. Our analysis of the complete
data resulted in many aspects in a generally well-
resolved tree, even though more than 20,000
equally parsimonious trees were found. The large
number was a result of a limited number of small
polytomies, which, when combined, result in the
large number of unique trees, but supertrees are
only as good as the resource trees used for the
analysis. The number of unique trees available for
specific clades varied dramatically; a greater num-
ber of trees generally resulted in better resolved
clades. In general, the supertree was fairly well
resolved and provides a solid hypothesis for fur-
ther studies.

The taxonomic status of the genus Drosophila. –
The genus Drosophila Fallén 1823, is paraphylet-
ic, and various genera and subgenera are even
located within the subgenus Drosophila, making it
also paraphyletic (see subgenus Drosophila for
discussion). Several authors have suggested that

this situation should be addressed by a change in
nomenclature (Kwiatowski et al. 1997; Tatarenkov
et al. 1999; Hu & Toda 2001; Remsen & O’Grady
2002; Robe et al. 2005; Markow & O’Grady 2006;
Da Lage et al. 2007; Magnacca & O’Grady 2008).
On the basis of our review, a revision of the genus
seems warranted, and the issue will be addressed
in a separate article (van der Linde et al. 2007,
accepted).

Challenges for the future. – Of primary impor-
tance is the placement of the genera Hirtodroso-
phila, Zaprionus, Liodrosophila, Samoaia, and
related genera relative to each other. Another issue
is the poorly resolved topology in the tripunctata
clade. Current studies make clear that the tripunc-
tata group is paraphyletic. Many species and prob-
ably multiple genes will have to be sequenced be-
fore the topology within this group can be consid-
ered resolved. In addition, the current group desig-
nation must be altered to reflect current phyloge-
netic insights. The repleta species group presents a
similar problem; it might include several other
species groups.

Finally, many species and genera have never
been included in any molecular study. Many of
these species are difficult to culture or have been
collected only rarely for studies. On the basis of
more traditional classifications (e.g., Grimaldi
1990), several other genera might be positioned
within the current limits of Drosophila, e.g.
Zygothrica, Phorticella, and Paramycodrosophila.
We also expect inclusion of more species to result
in the discovery of more paraphyletic taxa and
subsequent taxonomic changes. Finally, if the
genus Drosophila and subgenus Drosophila are
split as we suggest the lower-level taxonomic
assignments will have to be revisited and adjusted
accordingly. We expect that many of these uncer-
tainties will be resolved in the next 10 years,
allowing this well-known family to become a
model for comparative biology as it is already for
genetics.
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