Life-history evolution in a Drosophila community along a deforestation gradient¹

Kim van der Linde^{*}, Bas Zwaan, Jan Sevenster, Jacques van Alphen, Paul Brakefield

Sections Animal Ecology & Evolutionary Biology, Leiden University, the Netherlands * Current address: Department of Biological Science, Florida State University, Tallahassee

Competition ability (~development time) versus colonisation ability (~starvation resistance) in a temporal heterogeneous environment^{23,4}

2) Research questions

-Body size? -Development time?

With regard to:

between traits:

Befor

Within species?

Can we measure Drosophila life-histories in the field? (yes)

Phenotypic/genetic/interspecific correlations

Are Genetic correlations a barrier to adaptation?

Key:

What is the effect of deforestation on:

-Starvation resistance?

-Genetic differences?

- Variation across species?

- Variation across habitats?

-GxE interactions?

-Environmental variation?

Deforestation leads to higher average and less variance⁴ Fast developing species superior in fruit abundance Starvation resistant species superior Large distances between patche , colonisation > competition Short distances het competition > colonisation Time of year

b) Single species lab experiments

Single environmental cue:							
	Pher	otypic effects		Genetic eff	ects		
Temperature ↑	Body size ↓			Body size ↓			
Deve		elopment time ↓		Developme	Development time ↑		
Stan		vation resistance ↑↓		Starvation	Starvation resistance ?		
Crowding ↑ Body		y size ↓		Body size	Body size ?		
	Development time ↑		†	Developme	Development time ↓		
Starvation resistance ↑		ce †	Starvation resistance ↑				
Correlatio	Correlations:						
Trait combination		Selection experiments	Other methods	Phenotypic	Latitudinal	Interspecific	
Body size - development time		0 or +	(-) or ±	+	-	? (+)	
Body size - starvation resist	ance	0 or +	?	0	0	+	
Development tir starvation resist	ne - ance	0 or +	0	?	0	+ or 0	

4) Field results

a) Metrics:

- Field experiment 1: expression of life-history traits in the original collection habitat
- 12 species, 5941 individuals
- Field experiment 2: transplantation experiment 4 species, 5629 individuals
- Common environment experiment: expression of life-history traits in the laboratory environment
- <mark>12 species, 15802</mark> individuals

b) Combined results:

Trait	Environmental variation?	Genetic variation?	Genetic Environmental GxE
Body size	Yes, but no clear pattern	Yes, but no clear pattern	32.7 % 35.8 % 31.4 %
Development time	Yes, disturbance ↑ → development time ↓	Yes, disturbance ↑ → development time ↓	19.8 % 40.9 % 39.4 %
Starvation resistance	Yes, disturbance ↑ → starvation resistance ↓	Yes, disturbance $\uparrow \rightarrow$ starvation resistance \uparrow	9.0 % 58.0 % 33.0 %

b) Interpretation:

- Body size: no consistent effects
- Development time: deforestation decreases food abundance fluctuations and that increases overall crowding, i.e. increased competition
- Starvation resistance: opening the canopy increased midday temperature and that drives the observed changes; changes might be incomplete
- van der Linde, K (2005) Testing Drosophila life-history theory in the field: local adaptation in body size, development time and starvation resistance (Ph.D. thesis, Leiden University, Leiden).
 Sevenster, JG & van Alphen, JJM (1993) Lecture notes in Biomathematics 98, 155-172.

- Sevenster, J G & van Alphen, JJM (1993) J. Anim. Ecol. 62, 720-736.
 Krijger, CL (2000) Spatio-temporal heterogeneity and local insect diversity (Ph.D. thesis, Leiden University, The Netherlands.).
 Krijger, CL, Peters, YC & Sevenster, JG (2001) Oikos 92, 325-332.
- 6. Hoffmann, AA, Hallas RJ, Dean JA and M Schiffer, M (2003) Science 301: 100-102.

of against sun and rair

- own transect (4 species)
- Common environment in laboratory (12 species)
- d) Genetic experiments:
 - Three species Two collection locations

		10000			
		Design	Traits measured	Populations (families) and species	
2	1	Full-sib (1 male: 1 female)	As below (2) plus starvation resistance	One population of <i>D. equinoxialis</i> (23), one of <i>D. malerkotliana</i> (16), and one of <i>D. saltans</i> (26).	
	2	Nested half- sib /full-sib (1 male: 4 females)	Development time, dry weight, fat-free dry weight, fat weight, fat percentage	Two populations of <i>D. equinoxialis</i> (50, 50), one of <i>D. malerkotliana</i> (- , 38), and two of <i>D. saltans</i> (48, 50)	

6) Synthesis

1. Development time and starvation resistance show correlated response to a change in the environment; body size is less sensitive

2. Genetic correlation between DT and SR is absent:

- Transplantation experiment: independent change in opposite direction
- Full-sib design: non-significant results around zero
- 3. Therefore, adaptation to a changing environment is not hampered by genetic correlations; h² for DT and SR low or absent and potential limitation for adaptation6
- 4. Different species show similar responses:
 - At phenotypic level
 - At genetic level
 - At genetic correlation level

5. Extrapolating results is difficult:

- Genetic correlations: different between locations and species
- **Extensive GxE components**
- Summary BSDS

5) Genetics: correlations <u>_0</u>_0 DT-SI £04 DT-DRY DT-FF DT-FA DT-PEF SR-DR SR-FF SR-FA SR-PEF DRY-F

rait combination	Phenotypic correlation	Genetic correlation	Interspecific correlation
ody size - evelopment time	-	0	+
ody size - tarvation resistance	+	+	+
evelopment time - tarvation resistance	-	0	+